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a b s t r a c t
Nitrogen-rich porous carbon (NPC) material was prepared from peony seed shell by one-step pyrol-
ysis, and the physicochemical properties were characterized. The results showed that the as-pre-
pared material had high surface area (3,509.1 m2·g–1) and abundant functional groups containing 
nitrogen and oxygen. The NPC material displayed excellent adsorption capacity (qe = 750 mg·g–1) 
for tetracycline (TC) even at pH = 3~11 or in the presence of salt ions ( . )CNa SO /NaCls 4

0.5 mol L� �0 1 1


. With Langmuir and pseudo-second-order models, the adsorption process of being spontaneous 
and endothermic could be satisfactorily described and the adsorption capability was derived to be 
about 892.7 mg·g–1 at 25°C. The saturated NPC was regenerated by pyrolysis technology and used 
in the treatment of TC simulated wastewater. After 4 cycles, the adsorption amount of TC on NPC 
still remained above 500 mg·g–1. Combined with the characterization analysis, it could be inferred 
that the adsorption of TC by NPC benefited from the high specific surface area and hierarchical 
pore structure of NPC, in addition to the active groups such as carbonyl, graphite-nitrogen and 
sp2 carbon on its surface.
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1. Introduction

Tetracycline (TC) is a broad-spectrum antibiotic applied 
in clinical medicine, veterinary medicine and feed addi-
tives. Recently, the TC pollution has attracted many domes-
tic and foreign researchers [1,2]. Various approaches have 
been adopted to remove TC in the environment, including 
advanced oxidation, membrane separation, electrochem-
ical methods and adsorption [3,4]. Among them, adsorp-
tion has been brought into focus owing to its low-cost, high 
efficiency and simple operation [5].

The core task of adsorption is to design and develop 
the adsorbent. Different from the adsorption materials like 
zeolite, resin and clay, biochar deserves great attention as 
its simple fabrication, a wealth of porous structure and 
surface functional groups [6,7]. However, there is a large 

variation in the adsorption quantity of different precur-
sor materials such as rice waste, Suaeda salsa and walnut 
shell, ranging from 70.17 to 607.00 mg·g–1 [8–11]. Therefore, 
the reasonable selection of precursor materials is crucial 
to improve the adsorption quantity of TC on biochars.

Peony seed shell (PS) is a by-product of peony seed oil 
extraction. The lack of related technologies including pro-
cessing and utilization results in the resource waste and 
environment pollution [12]. Previous studies have found that 
PS not only has a highly ordered three-dimensional struc-
ture, but also contains a variety of bioactive components 
such as fatty acids, polysaccharides, polyphenols and flavo-
noids [13]. During the pyrolysis process, the unique struc-
ture can serve as the natural template for the pore formation, 
while the active ingredients provide the possibility for the 
occurrence of chemical reactions. At present, PS-derived 
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carbons have achieved in the removal of dyes, heavy met-
als and other pollutants in water [14–16]. Nevertheless, these 
studies are still unable to expatiate the essential relation 
between the surface chemistry and structural characteristics 
of adsorbents and the removal of pollutants, which is essen-
tial to further improve the removal efficiency and expand  
the applications.

In this paper, nitrogen-rich porous carbon (NPC) 
derived from peony seed shell was prepared by one-step 
pyrolysis. The underlying mechanisms were revealed by 
analyzing the composition and structural properties of 
NPC material, as well as its adsorption behavior to TC. 
This study could be expected to provide a certain reference 
for the reutilization of biomass wastes and remediation of 
TC pollution in water.

2. Materials and methods

2.1. Reagents and materials

TC (USP, 99% in purity) was purchased from Aladdin 
Reagent Co., Ltd. Hydrochloric acid (HCl, 36%~38%), 
sodium hydroxide (NaOH, ≥98%), potassium hydroxide 
(KOH, 95%), sodium chloride (NaCl, ≥99.5%), sodium sulfate 
(Na2SO4, ≥99.5%) and melamine (C3H6N6, 99%) were all ana-
lytical reagents and obtained from Tianjin Kemiou Chemical 
Reagent Co., Ltd. The PS was obtained from Luoyang 
National Garden (Henan Province, PR China).

2.2. Preparation of NPC

Prior to use, the PS was rinsed, dried and ground to the 
desired particle size (40–25 mesh). The preparation pro-
cedures of NPC could be described as follow. Firstly, the 
treated PS (12.0 g) was placed into a 250 mL conical flask 
with 90 mL of 10 wt.% KOH solution and stirred at 80°C for 
1 h. After adding 8.4 g of melamine, the mixture was stirred 
for another 1 h and then transferred into a drying oven for 
48 h at 80°C to evaporate water. Subsequently, the resulting 
material was annealed at 800°C for 3 h in the presence of 
nitrogen with a heating velocity of 2°C·min–1. Finally, the 
carbonized product was washed with 15 wt.% HCl solu-
tion and distilled water alternately (until pH ≈ 7) before 
dried at 80°C overnight.

2.3. Characterization of TC and NPC

The surface morphology was investigated by the 
field-emission scanning electron microscope (FE-SEM, 
Gemini 300, ZEISS) and transmission electron microscopy 
(FE-TEM, JEM-F200, JEOL). The crystalline state was ana-
lyzed using X-ray diffraction (XRD, D8 Advance, Bruker) 
with Cu Kα radiation. Raman spectroscopy (LabRAM HR 
Evolution, Horiba) were employed to analyze the carbon 
defects and graphitization. Porous structure was deter-
mined using a surface and porosity analyzer (Autosorb iQ3, 
Quantachrome). The functional groups were identified by 
Fourier-transform infrared spectroscopy (FTIR, Nexus-470, 
Nicolet) and X-ray photoelectron spectroscopy (XPS, Thermo 
Scientific K-Alpha, Thermo Fisher) was performed with a 
monochromatic Al Kα source to detect the chemical states.

2.4. Adsorption experiments

Adsorption experiments were conducted by mixing 
12.5 mg of NPC with 50 mL of TCs solution in the stopped 
conical flask. The flask was shaken in a thermostatic oscillator 
at the speed of 160 rmp. After the predefined time interval, 
the solution was filtered and analyzed for the concentration 
of TCs using UV-Vis Spectrophotometer. The influence of 
initial pH (3.0–11.0), ionic strength (0.1–0.5 mol·L–1 of NaCl 
or Na2SO4), TC concentration (50–400 mg·L–1), adsorption 
time (0–690 min), and temperature (15°C, 20°C, 25°C, 35°C 
and 45°C) on adsorption was also investigated. Solution pH 
was adjusted with 0.1 mol·L–1 HCl and 0.1 mol·L–1 NaOH. 
The adsorption quantity (q) was determined by Eq. (1):

q
C C V
W

e�
�� �0  (1)

where V, C0 and Ce each denote the volume (L), concentra-
tion (mg·L–1) at initial and equilibrium stages of TC solution, 
and W stands for the quantity of NPC.

All the data were the average of three independent 
runs and all the results were reproducible with ±5% error  
limit.

2.5. Desorption and reusability studies

The regeneration was performed by the pyrolysis of 
NPC adsorbed by TC at 700°C for 1 h. The regenerated NPC 
was directly deployed in the next adsorption cycle. After 
the equilibrium was attained, the adsorbent was collected 
with filters and the residual TC was determined. The reus-
ability procedures were carried out for four times.

3. Results and discussion

3.1. Characterization of TC and NPC

3.1.1. Scanning electron microscopy and transmission 
electron microscopy analysis

Fig. 1a shows that PS is a three-dimensional layered 
structure. After carbonization, a significant number of 
defects and channels could be observed clearly due to the 
full opening of the pores. (Fig. 1b–d), which was critical 
for the exposure of active sites on the surface of NPC and 
the transport of TC [17].

3.1.2. Nitrogen adsorption and desorption

The nitrogen adsorption and desorption isotherm of 
NPC is displayed in Fig. 2a. The curve obviously conformed 
to the characteristics of type Ⅳ isotherm. The relative pres-
sure P/P0 was between 0.4 and 0.9 with H4 hysteresis ring, 
indicating that there were a mass of mesopores in NPC. 
When P/P0 was less than 0.1, the sharp increase of isotherm 
demonstrated the massive existence of micropores in the 
material. When P/P0 > 0.9, the increasing tendency of adsorp-
tion curve implied the presence of large pores. In summary, 
the multistage pore structure of NPC, which coincided 
with the pore diameter distribution curve (Fig. 2b), pro-
vided the favorable conditions for TC adsorption [18–20].
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3.1.3. XRD analysis

As illustrated in Fig. 3a, the XRD pattern showed a pair 
of wide diffraction peaks near 2θ = 22.3° and 43.2°, repre-
senting the (002) and (100) planes of amorphous and crys-
talline carbon, respectively. Among them, the peak intensity 
of (100) crystal face reflected the degree of graphitization 
of the material [21]. Fig. 3b shows the Raman spectra of 
NPC and two diffraction peaks appeared near 1,341 and 
1,583 cm–1, which belonged to peak D and peak G, respec-
tively. The ratio of two strengths (ID/IG) was applied to reveal 
the defect level in the carbon layer [22,23]. The ID/IG value of 
1.09 confirmed the existence of defects and distortion, which 
could be caused by N-doping on the surface of NPC [24].

3.1.4. XPS analysis

For further understanding the chemical properties of 
material surface, the XPS spectroscopy was employed and 
illustrated in Fig. 4. As seen from Fig. 4a, the NPC were 
mainly composed of carbon, oxygen and nitrogen, appear-
ing in C1s (284.8 eV), O1s (532.1 eV) and N1s (401.9 eV), 
respectively. The spectrum of C1s (Fig. 4b) could be fitted to 
three peaks, namely C=C/C–C (284.8 eV), C=O (286.0 eV) and 
π–π* (290.2 eV), while the three peaks of N1s (Fig. 4c) could 
be ascribed to pyridine nitrogen (398.9 eV), pyrrole nitrogen 
(400.0 eV) and graphite nitrogen (401.9 eV). Moreover, the O1s 
spectrum was decomposed into two peaks: C=O (531.9 eV) 
and C–OH/C–O–C (532.8 eV) (Fig. 4d). To sum up, the sur-
face of NPC contained abundant functional groups, which 
provided favorable conditions for the adsorption of TC [25].

3.2. Batch adsorption

3.2.1. Adsorption kinetics

To investigate the kinetics of TC adsorption by NPC, 
pseudo-first-order, pseudo-second-order, Elovich and 
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Fig. 1. Scanning electron microscopy images of PSC (a) and nitrogen-rich porous carbon (b), transmission electron microscopy 
(c) and high-resolution transmission electron microscopy (d) images of nitrogen-rich porous carbon.
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Fig. 2. Nitrogen adsorption and desorption curves (a) and pore-
size distribution (b) of nitrogen-rich porous carbon.
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Fig. 3. X-ray diffraction pattern (a) and Raman spectroscopy (b) of nitrogen-rich porous carbon.
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Fig. 4. X-ray photoelectron spectroscopy survey (a), high-resolution C1s (b), N1s (c) and O1s (d) of nitrogen-rich porous carbon.
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intraparticle diffusion models (Table 1) were selected and 
the results are demonstrated in Fig. 5 and Table 2. With the 
extension of time, as seen from Fig. 5a, the adsorbed TC 
amount (qt) presented a “fast before slow” growth trend and 
the adsorption equilibrium reached within 12 h. In addition, 

the TC adsorption remarkably increased with the tem-
perature, indicative of endothermic nature of the process.

On observing Table 2 it was found that pseudo-sec-
ond-order model fitted the data for TC adsorption better 
(R2 > 0.995, Δqe < 0.002%). This implied that chemisorption 

Table 1
Formulas and parameters of kinetic and isotherm models

Model Expression Parameter

Pseudo-first-order model q q k tt e� � �� ��� ��1 1exp qt (mg·g–1) is the adsorption quantity at time (t);
k1 (g·mg–1·min–1) is the rate constant of equation.

Pseudo-second-order model q
k q t
k q tt
e

e

�
�� �
2

2

21 k2 (g·mg–1·min–1) is the rate constant of equation.

Elovich equation q tt � � � �1 1
�

��
�

ln ln
α (g·mg–1·min–1) is the initial adsorption rate constant;
β (g·mg–1) is related to the extent of surface coverage and 
activation energy for chemisorption.

Intraparticle diffusion model q k t Ct d� �0 5. kd is intraparticle diffusion rate constant and C is the intercept.

Langmuir model q
q K C
K Ce

m L e

L e

�
�1

qm (mg·g–1) is the saturated adsorption amount;
KL (L·mg–1) is the constant related to the binding energy.

Freundlich model q K Ce F e
nF= 1/ KF and nF are Freundlich constants.

Dubinin–Radushkevich model

q q ke m� �� �exp DR�
2

kDR is Dubinin–Radushkevich constant;
ε is the Polanyi potential;
R is universal gas constant (8.314 J·K–1·mol–1);
T (K) is temperature;
E (kJ·mol–1) is the adsorption mean free energy.

� � �
�

�
��

�

�
��RT

Ce
ln 1 1

E
k

=
1
2 DR

Temkin model q RT
b

A Ce T e� � �ln
AT (mL·mg–1) is the model constant;
b (J·mol–1) is a constant related to heat of sorption.
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Fig. 5. Non-linear fits of pseudo-first-order, pseudo-second-order and Elovich kinetic models (a) and linear fit of intraparti-
cle diffusion model (b) for the tetracycline adsorption at 25°C, 35°C and 45°C (adsorbent dose: 0.4 g·L–1, initial concentration: 
250 mg·L–1, pH: 3.5).
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predominated in the whole process, which was consistent 
with the TC adsorption by corn stalk-based biochar using 
KOH as activator [26,27]. Given the importance of diffus-
ibility for the overall velocity of adsorption, the intraparti-
cle diffusion model was applied as the complement to above 
models. As shown in Fig. 5b, the intraparticle diffusion regu-
lated the sorption rate with boundary layer diffusion by TC 
concentration, reaction temperature and the accessibility of 
active site on NPC. What followed was the slow diffusion 
of TC from larger pores to micropores until the equilibrium 
was finally achieved. The middle part of curve didn’t pass 
through the origin, implying that the adsorption was jointly 
controlled by intraparticle diffusion and film diffusion [28].

3.2.2. Adsorption isotherms

The determination of adsorption isotherm was of great 
significance for further study on the surface properties of 
adsorbent and inference of adsorption mechanism. The 
adsorption experiment of TC solution with different con-
centrations by NPC was performed and the data was fitted 
by the isotherm models (Table 1) of Langmuir, Freundlich, 
Dubinin–Radushkevich and Temkin. When increasing the 
TC concentration, the adsorption amount (qe) of NPC from 
Fig. 6 could be seen increasing rapidly at first and then grad-
ually levelling off, which was relevant to the occupation 

and saturation of active sites. Furthermore, the increase of 
qe value with temperature demonstrated that the adsorption 
could benefit from the higher temperature, which was in 
accordance with the results of kinetic studies [29].

As described in Table 3, Langmuir model fitted the adsorp-
tion of TC by NPC best, considering its high coefficients 
(R2 > 0.980) and low error values (Δqe < 0.0291%) as well as the 
correspondence between simulated value (qm) and measured 
value (qe) at different temperatures. Moreover, the increase 
of model constant (KL) with temperature manifested that the 
adsorption affinity of NPC for TC was enhanced by increas-
ing the temperature [33]. The maximum monolayer adsorp tion 
amounts of TC on NPC was 892.7 mg·g–1 at 25°C. Compared 
with other adsorbents in the published literature (Table 4), 
the NPC material exhibited great advantage in TC adsorption.

The Temkin model wasn’t suitable for describing the 
adsorption process in view of the lower R2 and higher Δqe 
values. In contrast, Dubinin–Radushkevich model had better 
fitting performance. The apparent free energy of adsorption 
was calculated to be about 4.71 kJ·mol–1 (1 < E < 8 kJ·mol–1), 
confirming the nature of physical adsorption.

3.2.3. Adsorption thermodynamics

Thermodynamic parameters including enthalpy change 
(ΔH°), Gibbs free energy change (ΔG°) and entropy change 

Table 2
Kinetic parameters for tetracycline adsorbed onto nitrogen-rich porous carbon

Models Parameters Temperature (°C)

25 35 45

Pseudo-first-order k1 (min–1) 0.0180 0.0194 0.0207
qe (mg·g–1) 770.3 795.4 834.9
R2 0.916 0.909 0.933
Δqe (%) 0.070 0.068 0.055

Pseudo-second-order k2 (g·mg–1·min–1) 2.85 × 10–5 3.09 × 10–5 3.26 × 10–5

qe (mg·g–1) 862.3 884.2 921.7
R2 0.996 0.997 0.999
Δqe (%) 0.0017 0.0015 0.0013

Elovich α (mg·g–1·min–1) 95.553 132.184 188.085
β (g·mg–1) 0.0072 0.0074 0.0075
R2 0.963 0.960 0.933
Δqe (%) 0.062 0.059 0.068

Intraparticle diffusion Kid1 (mg·g–1·min–0.5) 70.478 71.326 75.563
Stage 1 C1 (mg·g–1) –20.610 10.437 17.455

R2 0.942 0.921 0.921
Stage 2 Kid2 (mg·g–1·min–0.5) 21.529 22.176 22.079

C2 (mg·g–1) 395.659 418.763 468.615
R2 0.985 0.991 0.981

Stage 3 Kid3 (mg·g–1·min–0.5) 9.119 8.271 5.494
C3 (mg·g–1) 593.798 693.312 739.276
R2 0.973 0.975 0.932

Notes: �q
Q Q Q

ne
e n m n e n%

/, , ,� � �
�� ��� ��
�

�
100

1

2

, Qe,n and Qm,n (mg·g–1) are the adsorption amount of experiment and calculation, 

respectively, and n is the number of observation.
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(ΔS°) were calculated based on the adsorption isotherms 
at different temperatures. As shown in Table 5, the nega-
tive ΔG° meant that the adsorption reaction spontaneously 
occurred. Moreover, the ΔG° (absolute values) increased 
with temperature, signifying that the spontaneous trend 
was larger at higher temperature. The positive ΔH° sug-
gested the adsorption was endothermic, that is, increasing 

the temperature was conducive to the adsorption. The ΔH° 
value less than 40 kJ·mol–1 illustrated the presence of phys-
ical adsorption, which coincided with the apparent acti-
vation energy (Ea) being between 5 and 40 kJ·mol–1. The 
positive ΔS° revealed that the adsorption of NPC for TC 
increased the randomness of solid–liquid interface.

3.3. Adsorption mechanisms

3.3.1. Electrostatic interaction and pore-filling effect

In order to clarify the role of electrostatic interaction in 
the adsorption of TC by NPC, the effect of initial pH was 
investigated and the result is shown in Fig. 7a. When the pH 
increasing from 3.0 to 7.0, the adsorption amount (qt) only 
dropped 2%. Further raising to 11, the qt value decreased by 
19%. For one thing, as an amphiphilic compound, TC could 
exist in the form of cations (TCH3+), zwitterions (TCH2+) and 
anions (TCH2–) in aqueous solution [37]. With increasing the 
pH, TC gradually shifted from cation to anion. On arriv-
ing at the isoelectric point of NPC (pHpzc = 8.0), the interac-
tion between TC and NPC shifted from weak electrostatic 
attraction to strong electrostatic repulsion. For another, the 
increased pH promoted the deprotonation of the amino and 
phenolic hydroxyl groups on the surface of TC and inhib-
ited the possible π–π and cation-π electron donor–acceptor 
(EDA) interaction between TC and the graphitized struc-
ture of NPC, thus further reducing the adsorption quantity 
[38]. Even under alkaline condition, the adsorption amount 
of NPC for TC still retained above 750.48 mg·g–1, indicating 
that electrostatic action was not the predominant mechanism 
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Fig. 6. Non-linear fits of Langmuir, Freundlich, Dubinin–Radu-
shkevich and Temkin isotherm models for the tetracycline 
adsorption at 25°C, 35°C and 45°C (adsorbent dose: 0.25 g·L–1, 
contact time: 12 h, pH: 3.5).

Table 3
Isotherm parameters for tetracycline adsorbed onto nitrogen-rich porous carbon

Models Parameters Temperature (K)

298 308 318

Langmuir KL (L·mg–1) 5.687 5.994 6.541
qm (mg·g–1) 892.7 1008.9 1116.6
qe (mg·g–1) 903.1 1019.8 1128.6
R2 0.980 0.992 0.993
Δqe (%) 0.0291 0.0187 0.0192

Freundlich KF (mg·g–1 (L·mg–1)1/n) 586.1 676.8 756.8
1/n 0.122 0.123 0.131
R2 0.757 0.776 0.768
Δqe (%) 0.589 0.458 0.475

Dubinin–Radushkevich kDR 2.79 × 10–8 2.53 × 10–8 2.26 × 10–8

qm (mg·g–1) 870.3 980.7 1086.6
R2 0.915 0.932 0.939
Δqe (%) 0.0294 0.0183 0.0182

Temkin AT 898.3 937.2 743.1
b 27.94 25.12 22.21
R2 0.828 0.850 0.845
Δqe (%) 0.484 0.363 0.370

Notes: �q
Q Q Q

ne
e n m n e n%

/, , ,� � �
�� ��� ��
�

�
100

1

2

, Qe,n and Qm,n (mg·g–1) are the adsorption amount of experiment and calculation, 

respectively, and n is the number of observation.
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[23,39]. This could be confirmed by the slight influence of 
ionic strength on the adsorption (Fig. 7b).

Wang et al. [40] believed that pore-filling played a piv-
otal role in the adsorption of organic pollutants based on the 
unique physical characteristics of biochars. The Brunauer–
Emmett–Teller (BET) results suggested that the specific 
surface area (SBET), total pore volume (Vtotal) and micropore 
volume (Vmicro) were reduced by 80%, 74% and 65%, respec-
tively after adsorption, and average pore size (Dp) dropped 
from 2.350 to 0.581 nm (Table 6). Obviously, the pore-fill-
ing was instrumental in adsorption of TC by NPC. This 
could be demonstrated by the positive correlation of the 
SBET, Vtotal with qe (Fig. 8). Overall, the presence of micropo-
rous and mesoporous structure in NPC was unquestionably 
beneficial to the adsorption of TC [41–43].

3.3.2. π–π and n–π EDA interactions

In addition to the physical structure, the chemical prop-
erties of adsorbent were crucial to the adsorption of organic 
pollutants. To further reveal the adsorption mechanism of 

Table 4
Comparison of adsorption capacities of various adsorbents for tetracycline at 25°C

Feedstock Modifier Pyrolysis 
temperature (°C)

Tetracycline concentration 
(mg·L–1)

Adsorbent dose 
(g·L–1)

Qmax 
(mg·g–1)

PS [This study] Melamine 800 20~400 0.4 892.7
Lotus seed [30] K2C2O4/CaCO3 800 20~160 0.1 506.6
Wheat straw [31] KOH/KMnO4 700 10~200 0.25 542.4
Tea waste [32] KHCO3 700 10~200 0.5 425.17
Wheat straw [5] FeCl3/CO(NH2)2 700 10~200 1.0 156
Zeolite [34] CTAB – 100 1.5 7.0
Pyrrole [35] FeCl3 – 100 0.6 5.0
Maize stalks [36] – – 100 2.5 7.0

Table 5
Thermodynamic parameters for tetracycline adsorbed onto nitrogen-rich porous carbon

Ea (kJ·mol–1) ΔH° (kJ·mol–1) ΔS° (J·mol–1·K–1) ΔG° (kJ·mol–1)

288 K 293 K 298 K 308 K 318 K

5.33 5.49 0.142 –35.4 –36.1 –36.7 –38.1 –39.6
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Fig. 7. Effect of ionic strength (a) and solution pH (b) on the adsorption of tetracycline (adsorbent dose: 0.4 g·L–1, initial concentra-
tion: 250 mg·L–1, temperature: 25°C, contact time: 12 h).

Table 6
Brunauer–Emmett–Teller results of the nitrogen-rich porous 
carbon before and after tetracycline adsorption

Nitrogen-rich 
porous carbon

SBET 
(m2·g–1)

Vtotal 
(cm3·g–1)

Vmicro 
(cm3·g–1)

Dp 
(nm)

Before adsorption 3,509.1 1.335 1.035 2.225
After adsorption 522.8 0.384 0.361 0.581
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Fig. 8. Correlation between adsorption amount (qe) and the properties of nitrogen-rich porous carbon. SBET (a) and Vtotal (b).
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TC by NPC, the XPS analysis was conducted and the results 
are displayed in Fig. 9. Compared with before adsorption 
(Fig. 4), there was obvious difference in the composition con-
tent and binding energy. In particular, the binding energy 
of π–π* shifted and the content of graphitic nitrogen was 
reduced markedly, implying that the corresponding func-
tional groups participated in the adsorption. As known, the 
structure of TC molecule contained phenolic, amino, enol, 
ketone and other polar functional groups, which have strong 
electron-attractive ability and could produce relatively 

strong interaction of π–π electrons with aromatic rings or 
unsaturated structures on NPC [44]. In addition, the sig-
nificant decrease in C=O content might be associated with 
n–π EDA interaction between NPC and benzene ring of TC 
[45]. These conclusions were in complete conformity to those 
obtained from the FTIR spectra of NPC after adsorption/
desorption of TC (Fig. 10).

The pore-filling effect, π–π/n–π EDA and cation-π inter-
action could contribute to the adsorption of TC on NPC 
(Fig. 11).
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Fig. 10. Fourier-transform infrared spectra of nitrogen-rich 
porous carbon after adsorption/desorption of tetracycline.
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3.4. Recycling and simulated wastewater applications

To investigate the economy and environmental sustain-
ability, the waste NPC was regenerated by pyrolysis method 
and applied to treat the simulated wastewater with various 
concentrations of TC (0.1, 0.5 and 1.0 g·L–1). As seen from 
Fig. 12, the adsorption amount (qt) of TC on NPC initially 
remained unchanged at all concentrations, which might be 
relevant to the full exposure of active sites after regenera-
tion. After 4 cycles, the qt value was reduced significantly. 
Nonetheless, the absorbed TC by NPC still remained above 
500 mg·g–1. To sum up, the NPC material had good adsorp-
tion capability and recycling performance in removing TC 
from water.

4. Conclusion

In this research, the NPC material was successfully pre-
pared by one-step pyrolysis and applied to remove TC from 
water. According to the results, the adsorption of NPC for 
TC was highly dependent on solution pH, contact time and 
initial concentration. Langmuir and pseudo-second-order 
models were employed to describe the adsorption behav-
ior of NPC for TC and the maximum adsorption capability 
was 892.7 mg·g–1 at 25°C. Thermodynamic studies revealed 
that the adsorption process was characteristic of endother-
mic and spontaneous. The characterization and correlation 
analysis suggested that sp2 carbon, graphitic nitrogen and 
carbonyl of NPC were the active sites for TC adsorption. 
The adsorption mechanisms mainly included pore-filling 
effect, π–π/n–π EDA and cation-π interactions. In conclu-
sion, the NPC material possesses many excellent properties 
such as strong adsorption, good repeatability and has great 
application potential in TC wastewater treatment.
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