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a b s t r a c t
A reasonable allocation can improve the allocation rate of water resources, and ensure ecolog-
ical coordination and promote economic development. However, with cities developing quickly, 
urban water resources allocation is becoming more and more prominent. This study designs a 
multi-objective optimal allocation model of urban water resources based on simulated annealing 
algorithm, introduces the sudden jump of probability, adopts the multi-objective Pareto effective 
solution, and further improves the simulated annealing algorithm. The actual total water demand 
in 2022 is 6,606.53  million·m3 larger than the actual water supply 6,556.53  million·m3. The small 
probability errors of water demand and water supply forecasts are 0.8532 and 0.9586, the aver-
age relative errors are 0.0231 and 0.0212, and the variance ratios are 0.2125 and 0.2109, indicat-
ing that the forecasts are valid and the prediction accuracy is good. The model convergence is 
the fastest when using the multi-objective simulated annealing algorithm to close compared with 
other algorithms. By using an improved simulated annealing method to solve this multi-objective 
optimal allocation model effectively avoids the iterative process from falling into local optimum 
and improves the accuracy of prediction evaluation. The experimental results show that the algo-
rithm has high accuracy and stability for water resources optimal allocation, which has certain 
practical significance and economic value in water resources.

Keywords: �Multi-objective allocation; Simulated annealing algorithm; Water resources; Water supply; 
Water demand

1. Introduction

Water is an important natural resource indispensable for 
human development and an essential element for human 
survival. Overall, China is one of the countries with seri-
ous shortage of water resources (WR). China’s total water 
resources (WR) account for 6% of the world, ranking fourth, 
but the per capita WR are less than 1/4 of the world aver-
age, and the per capita possession is extremely low [1,2]. 
Locally, China’s WR are unevenly distributed, and there are 
regional problems, such as the problem of WR differences 

between the north and the south [3]. WR allocation refers 
to the scientific use of relevant measures to plan the allo-
cation of WR within a certain area. Rational allocation of 
WR not only improves the distribution rate of WR, but also 
ensures ecological harmony and promotes economic devel-
opment [4]. However, with the accelerated growth of cities, 
the issue of urban water allocation is becoming increasingly 
important [5]. The expansion of cities has led to a significant 
increase in water demand and pressure on regional water 
supplies, while the increase in factories and the discharge 
of effluent from unscrupulous enterprises has resulted in 
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polluted WR and a reduction in available resources [6]. To 
make the urban water supply demand alleviated effectively, 
an optimal allocation analysis of WR is needed according 
to city developing level. Based on this background, this 
study proposes a multi-objective simulated annealing (SA) 
algorithm-based optimization method for urban WR allo-
cation, aiming to provide ideas for solving water conflicts 
in urban WR and alleviating water supply conflicts.

This study has four parts. The second part provides a 
review of the current status of research on urban WR opti-
mal allocation and SA algorithm. The third section pro-
poses the design of multi-objective optimal allocation model 
(MBOAM) based on SA algorithm setup. The first section 
constructs the urban WR MBOAM, and the second section 
combines the SA algorithm to solve and improve the model. 
In the fourth section, the MBOAM of WR is experimen-
tally validated and the experimental results are analyzed.

2. Literature review

The optimal urban WR allocating is generally studied 
from several perspectives. Lv et al. [7] explored the effec-
tive WR allocating in urban metabolic systems from a cli-
mate perspective. Management pathways to cope with 
climate change are deployed with full consideration of cli-
mate change and regional differences. The study proves 
that climate exacerbates the vulnerability of WR and makes 
WR management more complex. Wu and Liu [8] designed 
a regional WR optimal allocation scheme based on indus-
trial structure upgrading using a two-tier optimization and 
master-slave recursive model. A three-step management 
approach and upgrading of industrial structure are used to 
promote the optimal WR allocating in the Beijing–Tianjin–
Hebei region. In addition, the researchers introduced a water 
market benefit compensation function to adjust the water 
resource allocation scheme. This model can promote indus-
trial structure upgrading, improve water use efficiency and 
achieve comprehensive and optimal WR allocating. Kang 
et al. [9] proposed a WR allocating model based on water 
quality, which was established under water quality and WR 
allocation. The model analyzes the influence of water qual-
ity on WR allocation and studies water pollutant treatment 
technology. This water resource allocation model can better 
conserve and protect WR and improve the water environ-
ment and assist managers’ decision making. Tian et al. [10] 
proposed a comprehensive WR evaluation and manage-
ment framework based on the optimal WR allocating. The 
framework first analyzed water demand, followed by the 
evaluation of vulnerability indicators using a non-domi-
nated sorting genetic algorithm. As water demand increases 
and water transfer projects expand, water supplying risk 
increases and the water supplying system’s reliability and 
resilience decrease. This study proposes a comprehensive 
WR evaluation and management framework that facilitates 
WR management.

Multi-water resource system is complex. Different algo-
rithms and models have been proposed by domestic and 
foreign researchers to study the optimal WR allocating. 
Liu et al. [11] proposed a fuzzy coalition game model for 
multi-country water resource allocation, which is based on 
the spatial and temporal characteristics of the geographic 

location of each country on the impact of water use, that is, 
water demand. It is better to increase the overall efficient 
WR allocating than the allocating strategy based on agri-
cultural water demand. Wang et al. [12] used an improved 
backpropagation neural network (BPNN) model instead 
of a numerical groundwater simulation model, aiming 
at coupling the simulation model with the optimization 
model. This improved BPNN and optimization technique 
can fully utilize the WR of the whole region, and the tradi-
tional scheme’s water shortage rate is about 10% reduced at 
75% guarantee rate. The output of the improved model is 
more consistent with the results of the simulation model, 
improving computational resources and running time. 
Li et al. [13] improved a multi-population method to deal 
with two-dimensional constrained model. The algorithm 
extends genetic optimization to two dimensions to fit the 
region-specific model to optimize WR allocating. The 
improved multi-population genetic algorithm uses indi-
viduals as the horizontal dimension and population as 
the vertical dimension, and replicates genetic operators to 
replace the cross-genetic operators. The results show that 
the improved algorithm has a strong optimization capa-
bility and that the algorithm can be practically applicated 
for optimal water resource allocation. Cunha and Marques 
[14] proposed a SA algorithm that combines an annealing 
procedure with a finite budget for function evaluation. This 
algorithm has a better performance and produces better 
frontiers compared to other algorithms. Mousavi et al. [15] 
proposed an optimizing model for optimal WR allocating 
for Salman Farsi irrigation network. The model was opti-
mized using the whale algorithm and the decision variables 
of the model were the irrigation water depth of the crop 
and the planted area. The total cropped area of the net-
work increased by 981 ha, but the total water use did not  
decrease.

In summary, the urban WR optimal allocating requires 
higher algorithms and models as the objects under con-
sideration change. Some studies have designed WR allo-
cating models from the perspectives of metabolic system, 
water quality, and agricultural water use, but there is still 
room for improvement in the optimization effect. In order 
to design a better model for water allocation optimization, 
this study will first construct a multi-objective optimization 
model for urban WR, and then improve and solve the model 
with SA algorithm. The optimization model will be used to 
optimize urban WR allocation and improve WR utilization.

3. Design of multi-objective optimal configuration model 
based on SA algorithm

This section includes two parts: model construction 
and model solving. Firstly, the objective benefit function of 
urban WR optimal allocating, the constraints that the vari-
ables should satisfy, and the quantitative analysis of rele-
vant parameters are established to construct the objective 
function (OF) model of WR allocating. Then, on the foun-
dation of the model’s characteristics, the traditional SA 
method can be optimized by combining Pareto effective solu-
tion to form the solution scheme of the urban WR optimal 
allocation model on the foundation of SA multi-objective  
algorithm.
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3.1. Urban WR MBOAM construction

Multi-objective planning theory is a mathematical plan-
ning method for solving the optimal solution of two or more 
OFs in a given region. The problem of urban WR alloca-
tion is mainly an imbalance between social, economic and 
ecological benefits, which can be mitigated by multi-objec-
tive optimal allocation [16]. The multi-objective planning 
theory is used to transform the urban WR allocation prob-
lem into a multi-objective solution problem. According 
to the urban WR allocation problem, the OF of urban WR 
MBOAM is established by combining the social, economic 
and ecological benefits. Eq. (1) is the OF.

F f y f y f y� � � � � � �� �opt 1 2 3, , 	 (1)

where y is the decision variable of the OF, which represents 
the water supply of the actual area. f1(y) represents the opti-
mization of social benefits, f2(y) represents the optimization 
of economic benefits, and f1(y) represents the optimiza-
tion of ecological benefits. The urban WR MBOAM is com-
posed of several decision variables. The urban sub-region 
is set as the decision object according to the geographical 
characteristics and administrative features of the region, 
and the expression of the decision object is shown in Eq. (2).

A A A AM� � �1 2, , , 	 (2)

where A denotes the decision object, M denotes a total of M 
sub-regions, and m denotes the m sub-region. The water use 
sectors in the region are classified as K, and there are five 
water use sectors in the K = 1, 2, …, 5 subzone, namely agri-
cultural, industrial, urban public, domestic and ecological 
water. Fig. 1 is the urban water allocation.

In Fig. 1 the first layer is the allocation of total water 
between sub-regions, and the second layer is the alloca-
tion of sub-region water between sectors. The social bene-
fit objective is a more abstract objective in water allocation, 
and is more difficult to measure than the economic and 
ecological benefit objectives. In order to better measure 
the social benefit target, the Eq. (1) of f1(y) is improved 
by converting the water deficit into the water deficit rate, 
which is expressed in Eq. (3).
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where vj
m represents the water shortage rate, and j represents 

the first water user. j yj
m m j xj

m represents j water users’ 
water demand in m. The OF of social benefits based on Gini 
coefficient combined with Eq. (3) is shown in Eq. (4).
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where v represents the total water shortage rate of alloca-
tion area, M represents the total sub-areas in this area, and J 
represents the total water users in this area. In the econom-
ics OF, unit revenue is equal to the unit revenue minus the 
unit cost. The unit revenue multiplied by the total amount 
is the economic revenue of each water user, and the effi-
ciency OF is expressed in the form of Eq. (5).
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where the objective of optimal water allocation is to obtain 
greater economic benefits, so the economic benefit func-
tion takes the maximum value. ϑj

m represents the economic 
income of j water users in the m subzone, and cj

m represents 
the water supply cost of j water users in the m subzone. tm 
γj

m represents the water order coefficient of water users in 
m subzone. The smaller the eco-efficiency OF is, the more 
optimal it is, and its functional expression is shown in Eq. (6).
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where dj
m represents the pollutant discharge coefficient of j 

water users in the m subzone, and qj
m represents the pollut-

ant content of the discharge of j water users in the m sub-
zone. The variables of the OF are valid only if the actual 
situation of the WR is satisfied, for which constraints need 
to be set. The total water supply of the regional WR cannot 
exceed the upper limit of the total WR available in the region. 

Optimal allocation

 of water resources

Sub-region (1) Sub-region (2) Sub-region (m)

Subregion(3) Subregion(4) Subregion(5)Subregion(2)Subregion(1)

   

Fig. 1. Schematic diagram of optimal allocation and division of urban water resources.



307F. Wang et al. / Desalination and Water Treatment 314 (2023) 304–313

Based on the total WR available in the standard year, the total 
water supply available in the planning year is predicted, 
and the constraint for WR supply is shown in Eq (7).
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where Yk represents the total amount of water available for 
the planning year. After the water supply quantity constraint, 
it needs constrain each user’s water consumption and set a 
reasonable minimum value for the water consumption of 
the user. Setting a minimum value also reduces iterations 
number and optimizes this algorithm. According to the 
actual meaning of the variables, the water supply cannot 
be negative, so the decision variables should also satisfy 
the non-negative constraint, which is shown in Eq. (8).

yj
m ≥ 0 	 (8)

where yj
m represents the decision variables and satisfies 

the non-negative constraint. The water demand predic-
tion value using the optimal water allocation conditions of 
each city needs to meet the red line target set by each prov-
ince and city to satisfy the global constraints, and the con-
straints are shown in Eq. (9).
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where Xhx represents the water consumption red line control 
target set by the province and city. In 2011, the country put 

forward the No. 1 document on the three red lines of WR, 
which refer to total water consumption, using efficiency 
and pollutant discharge [17]. Fig. 2 shows the relationship 
between the three red lines and the optimal allocating of 
urban WR.

From Fig. 2, the red line of water consumption is the 
binding indicator, and the red line of water consumption 
is the minimum target for urban WR allocation, followed 
by water demand and supply indicators. In other words, 
the total amount of urban WR allocation cannot exceed the 
red line constraint index of water consumption.

3.2. SA algorithm based urban WR MBOAM solving

The common methods for solving multi-objective opti-
mal configuration models include the integrated efficiency 
optimization method, penalty function method, objective 
programming method and intelligent optimization algo-
rithm. Comparing these methods, the intelligent optimi-
zation algorithm is more adaptable to the optimization 
problem and is also applicable to both linear and nonlinear 
problems [18,19]. In this study, SA algorithm, which is one 
of the intelligent optimization algorithms, is used for solv-
ing this model. SA algorithm simulates a solid material’s 
annealing process from a high temperature liquid state to a 
low temperature solid state in physics. In the solid matter’s 
annealing process, the overall energy gradually decreases 
from high, and the energy change corresponds to the opti-
mization of the function. In order to avoid the iterative 
process from falling into local optimum, the SA algorithm 
introduces the sudden jump of probability to receive the 
optimal solution with a certain probability. Fig. 3 shows a 
schematic representation of SA algorithm.
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Fig. 2. Relationship between red line of water consumption and water resources.
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As can be seen from Fig. 3, the function decreases con-
sistently as it iterates from A to B. If solved by the greedy 
algorithm, the algorithm calculation ends when the value of 
B is reached. Since the simulated algorithm receives a cer-
tain probability of non-optimal solutions, the possibility of 
then advancing from the value of B to the value of C arises. 
The goal of SA algorithm is to find the global optimal solu-
tion and reduce the probability of missing the global true 
optimal solution for C value. According to SA algorithm’s 
characteristics and generic parameter analysis, combined 
with the meaning of Pareto effective solutions in multi-ob-
jective programming, the solution step of the model starts 
with the elimination of the function magnitudes. In order 
to facilitate the subsequent calculation, the OFs with units 
f1(y), f2(y), f1(y) are used to eliminate the magnitudes with the 
function values of the base year, at which time the expres-
sions of the OFs are shown in Eq. (10).
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In Eq. (10) after eliminating the magnitudes, the param-
eters are also initialized. Using the integrated function to 
calculate these initial values, the smallest corresponding 
solution is selected as the initial solution of the multi-OF, 
and the solution process is shown in Eq. (11).
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where w represents the target weight, fz represents the 
integrated function. The minimum value’s corresponding 
solution is selected as the multi-OF’s initial solution. After 
obtaining the initial solution, the initial temperature needs 
to be set, and its formula is shown in Eq. (12).
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where fz
max represents the integrated function’s maximum 

value, fz
min represents the minimum value of the integrated 

function, and Pr represents the ratio of changes number in 
the initial temperature to the proposed changes number. 
The temperature reduction strategy is directly related to the 
global search performance of SA algorithm, and based on 
the reference [19], the exponential temperature reduction 
strategy is chosen in this study, and the exponential tem-
perature reduction strategy is shown in Eq. (13).

t tn n� � �1 � 	 (13)

where tn+1 and tn denote the temperature of the n+1 and n 
times, respectively, and α is a constant related to the change 
of temperature, which usually takes a range of values 
between (0.95 and 0.99) and [20]. When the external condi-
tions are consistent, the high temperature particles will tend 
to change to the low temperature particle energy state, the 
low temperature state of the energy particles more stable. 
Therefore, the maximum OF is chosen in the calculation 
of the function value, and its formula is shown in Eq. (14).

f y f y f y f yi i i� � � � � � � � �� �max , ,1 2 3 	 (14)

where f y� �  denotes the maximum sub-OF. As the size of 
the problem changes, the size of the combinatorial optimi-
zation problem solution changes accordingly, and the for-
mula for updating the variables is given in Eq. (15).

y yi h� � � � � �� �2 Rd 	 (15)

where ỹi+h represents a randomly selected point around 
this variable, μ is the step size, which is the ratio of the 
neighborhood to the number of constant temperature iter-
ations, and Rd represents a random value greater than 1 
and less than 0. In summary, the flow of the SA algorithm 
is shown in Fig. 4.

From Fig. 4 the initial temperature is first set to obtain 
the initial solution, which is simply transformed to pro-
duce the new solution, and then the difference of OF 
corresponding to the new solution is calculated. The deter-
mination of whether new solution is accepted or not is based 
on the acceptance criterion Δf, and if Δf  <  0 is accepted as 
the new current solution. When the new solution is accepted, 
the current solution is replaced by this new solution, and 
the transformation part corresponding to the new solution’s 
generation is implemented, while OF value is corrected. 
At this point, the current solution achieves one iterating. 
The next testing can be started. And when the new solu-
tion is discarded, the next trial continues on the foundation 
of the original current solution.

4. Analysis of urban WR multi-objective optimal 
allocation application

Taking urban Shenzhen as an example, the constructed 
MBOAM is applied and the results of its application are 
analyzed. To verify the effectiveness of this designed opti-
mal allocation model in urban water allocation, the bene-
fit indicators are predicted. To verify the superiority of the 

A

B

C

Fig. 3. Schematic diagram of simulated annealing algorithm.
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SA algorithm, comparison experiments are conducted with 
other algorithms.

4.1. SA algorithm performance analysis

With system reforming, city WR across the country is 
constantly being adjusted in terms of water supply allo-
cation. Places like Hangzhou, Fuzhou and Shenzhen are 
densely populated and economically developed, but the 
total water consumption continues to approach the water 

red line. The contradiction of WR in these cities is becom-
ing more and more prominent, and it is urgent to coordinate 
the water use structure [21]. Therefore, this study is based 
on the national three red lines policy and the three red lines 
scheme for WR in Guangdong Province, and Shenzhen is 
selected as an example for WR optimization. Table 1 shows 
the model parameters.

In Table 1, the model parameters are set to a cooling 
index of 0.96 and an initial control acceptance probability 
Pr of 0.9. The number of external cycles is 201 according to 
the formula, and the number of internal cycle terminations 
is 1,000 through repeated tests. Table 2 shows the water 
use efficiency parameters, water supply cost coefficients, 
pollutant emission coefficients and other parameters of the 
urban WR MBOAM.

From Table 2, the water use benefit coefficient is 0.0663 
for domestic water use and 0.0001 for agricultural water 
use, and water supply’s cost coefficient is 3.64 for non-res-
idential water supply and 0.56 for agricultural water sup-
ply, while the pollutant discharge coefficient is 0.87 for 
industrial wastewater and 0.65 for urban public wastewa-
ter. The changes of benefit indexes for different annealing 
stages of the simulation algorithm are shown in Fig. 5.

From Fig. 5 it can be seen that the overall decline rate of 
the social, economic and ecological OF values is rapid and 
shows a steep slope change at the initial stage of annealing 
when the temperature is iterated from 1.4 to 1. In the mid-
dle stage of annealing, the decreasing trend of the OF value 
decreases when the temperature t decreases from 1 to 0.1. 

Start

Whether the 
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Obtain an initial solution and 

set an initial temperature(  ).

Generate a new solution based 

on the previous solution.
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new solution

End

Return to the 

optimal solution

0t
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NY 
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Fig. 4. Flow chart of simulated annealing multi-objective 
algorithm.

Table 1
Parameter setting

Parameter name Value

Spatial scale of the initial solution 5000
Initial control acceptance probability Pr 0.9
Cooling index 0.96
End temperature 0.0001
Start temperature t0 1.3022
Number of external cycles 201
Number of internal cycle terminations 1000

Table 2
Parameter setting of water resources optimal allocating model

Parameter Specific parameters Value

Water benefit coefficient Industrial water benefit 0.0471
Agricultural water benefit 0.0001
Domestic water benefit 0.0663
Ecological water benefit 0.0596

Water supply cost coefficient Cost coefficient of domestic water supply 2.43
Non-residential water supply cost coefficient 3.64
Agricultural water supply cost coefficient 0.56

Pollutant discharge coefficient Industrial wastewater discharge coefficient 0.87
Domestic sewage discharge coefficient 0.72
Urban public sewage discharge coefficient 0.65
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At the end of annealing, when the temperature t decreases 
from 0.1 to 0.0001, the rate of decrease of the objective value 
is almost 0, and the overall shows a flat line state, and the 
algorithm tends to converge. To test the advantage of using 
the multi-objective SA algorithm for solving in the con-
figuration model, the multi-objective SA algorithm, the 
population genetic algorithm in the literature [13] and the 
SA algorithm in the literature [14] with the same parame-
ters are compared in Fig. 6.

From Fig. 6, the function values solved by all three 
algorithms show a decreasing trend as the temperature 
decreases. Compared with other algorithms using multi-ob-
jective SA algorithm to solve the OF value, the function 
curve is the steepest decreasing rate and the flatter curve 
at the end has the best convergence.

4.2. Analysis of urban WR optimal allocation application

The multi-objective optimal allocating of WR needs to 
achieve three benefits of three aspects. Table 3 shows the 
corresponding evaluation indicators’ weight values under 
each objective.

Table 3 shows that the economic benefit objective has a 
weight value of 0.4702, the ecological benefit objective has 
a weight value of 0.3734, and the social benefit objective 
has a weight value of 0.2544. The economic benefit objec-
tive has the highest weight value among the three benefit 
objectives, and the social benefit objective has the lowest 
weight value. By analyzing water supply and demand in 
Shenzhen in 2023, a multi-objective SA algorithm was used 
to optimize WR allocating and coordinate the water supply 
and demand requirements in Shenzhen. The results of the 

analysis of the simulation algorithm focusing on the benefit 
target scenarios are shown in Fig. 7.

In Fig. 7 the Ecological Priority Scenario meets the eco-
logical water target demand but not the industrial water 
target demand, with an industrial water shortage of 5.69 mil-
lion·m3. The Economic Priority Scenario meets the industrial 
water target demand but not the ecological water target 
demand, with an ecological water shortage of 5.89  mil-
lion·m3. The Economic Priority Scenario meets the ecological 
and agricultural water target demand but not the indus-
trial and domestic water target demand, with an industrial 
water shortage of 5.93 and 5.78 million·m3.

Based on the socio-economic profile, WR profile and 
sub-region profile of Shenzhen, the water demand and 
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supplying in Shenzhen in 2023 were predicted using the 
water supplying and demand prediction model. The statis-
tical data of Shenzhen from 2011 to 2022 was selected as the 
original data and calculated cumulatively using the cum-
sum function series in MATLAB. The water demand forecast 
results are shown in Fig. 8.

From Fig. 8, the total water consumption forecast for 
Shenzhen in 2023 is 6,698.29 million·m3, and the actual water 
demand is unknown for the time being; the total water 

consumption forecast for Shenzhen in 2022 is 6,573.27  mil-
lion·m3, and the actual total water demand is 6,606.53  mil-
lion·m3. The data qualified for this forecast also has good 
forecast accuracy, with a small probability error of 0.8532, 
of which the average relative error is. Similarly, the same 
method was used to forecast water supplying in the region, 
and these results are shown in Fig. 9.

From Fig. 9 the forecast value of water supply in 
Shenzhen in 2023 is 6,728.75  million·m3, the forecast value 

Table 3
Weight value corresponding to the evaluation index

Performance 
indicator

Benefit constitutes an indicator Upper 
limit

Lower 
limit

Optimal Target 
weights

Social effect 
results benefit

Household water comfort level 0.0998 0.1085 0.1001

0.2544
Social development 0.0081 0.0141 0.0106
Fairness of water use 0.0985 0.1043 0.0987
Water supply pressure 0.0305 0.0363 0.0335

Ecological 
benefit

Level of ecological environment construction 0.1203 0.1185 0.1125

0.3734
Environment is far away from the pollution degree 0.7685 0.1002 0.1001
Water resource regeneration capacity 0.0109 0.0156 0.0132
Water saving ability 0.1170 0.1121 0.1114

Economic 
benefits

Economic development level of the industrial sector 0.0870 0.0952 0.0836

0.4702
Economic development level of the agricultural sector 0.0301 0.0316 0.0305
Agricultural water supply cost coefficient 0.1705 0.1784 0.1695
Rationality of the industrial structure 0.1332 0.1352 0.1336
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nomic benefit priority scheme and (c) social benefit priority scheme.
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of total water supply in Shenzhen in 2022 is 6,603.27  mil-
lion·m3, the actual total water demand is 6,556.53 million·m3. 
The small probability error is 0.9586, of which the aver-
age relative error is 0.0212 and the variance ratio is 0.2109, 
indicating that the forecast result is valid and the test num-
ber is qualified. The actual total water demand in 2022 is 
6,606.53 million·m3 > actual water supply 6,556.53 million·m3, 
the water supplying capacity is smaller than the planning 
year’s demanding capacity, and there is a certain pres-
sure of supply and demand.

5. Conclusion

To address the problem of optimal allocating of urban 
WR, this study designed a MBOAM, which was solved 
and improved using an algorithmic SA algorithm. The 
predicted total water consumption in Shenzhen in 2022 
is 6,573.27  million·m3 and the actual total water demand 
is 6,606.53  million·m3. The predicted total water supply in 
Shenzhen in 2022 is 6,603.27 million·m3 and the actual total 
water demand is 6,556.53 million·m3. The small probability 
error is 0.9586, of which the average relative error is 0.0212 
and the variance ratio is 0.2109. 0.2109, indicating that the 

prediction result is valid and the test number passes. The 
actual total water demand in 2022 is 6,606.53  million·m3 
greater than the actual water supply capacity of 6,556.53 mil-
lion·m3, and the water supplying capacity is less than the 
planning year’s demanding capacity. In the SA algorithm, 
the temperature iterates from 1.4 to 1, the overall rate of 
decline of the three OF values is rapid, showing a steep 
slope change. When the temperature t decreases from 1 to 
0.1, the decreasing trend of three OF values decreases, but 
the target values do not improve significantly with iteration 
increasing. At the end of annealing, the rate of decline of the 
objective value is almost 0, and the overall presentation of 
the flat line state value change is not obvious, and the algo-
rithm tends to converge. Compared with other algorithms 
using multi-objective SA algorithm to solve OF value, the 
function curve is the steepest with the fastest rate of decline, 
and the curve is flat at the end with the best convergence. 
It shows that the multi-objective SA algorithm designed in 
this study effectively solves the traditional algorithm for 
water resource allocation, alleviates water resource con-
flicts, and is more conducive to the management of deci-
sion makers and improves management efficiency. The 
drawback of this study is that the consideration of factors 
affecting WR is not comprehensive enough, and more influ-
encing factors will be introduced in the subsequent study.
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Fig. 9. Total water supply map of Shenzhen City.



313F. Wang et al. / Desalination and Water Treatment 314 (2023) 304–313

[11]	 D. Liu, X. Ji, J. Tang, H. Li, A fuzzy cooperative game theoretic 
approach for multinational water resource spatiotemporal 
allocation, Eur. J. Oper. Res., 282 (2020) 1025–1037.

[12]	 Y. Wang, Y. Cui, J. Shao, Q. Zhang, Study on optimal allocation 
of water resources based on surrogate model of groundwater 
numerical simulation, Water, 11 (2019) 831, doi: 10.3390/
w11040831.

[13]	 R. Li, Y. Chang, Z. Wang, Study of optimal allocation of water 
resources in Dujiangyan irrigation district of China based 
on an improved genetic algorithm, Water Supply, 21 (2021) 
2989–2999.

[14]	 M. Cunha, J. Marques, A new multi-objective simulated 
annealing algorithm—MOSA-GR: application to the optimal 
design of water distribution networks, Water Resour. Res., 
56 (2020) e2019WR025852, doi: 10.1029/2019WR025852.

[15]	 S.Z. Mousavi, A.M. Akhondali, A. Naseri, S. Eslamian, 
S. Saadati, Evaluation of whale and particle swarm optimisation 
algorithms in optimal allocation of water resources of 
irrigation network to maximise net benefit case study: Salman 
Farsi, Int. J. Hydrol. Sci. Technol., 12 (2021) 333–345.

[16]	 X.S. Yang, Multi-objective optimization, Nature-Inspired 
Optimization Algorithms (Second Edition), 29 (2021) 221–237.

[17]	 H. Guan, L. Chen, S. Huang, C. Yan, Y. Wang, Multi-objective 
optimal allocation of water resources based on ‘three red lines’ 
in Qinzhou, China, Water Policy, 22 (2020) 541–560.

[18]	 H. Liu, F. Gu, Y.-M. Cheung, An expensive multi-objective 
optimization algorithm based on decision space compression, 
Int. J. Pattern Recognit. Artif. Intell., 35 (2021) 2159039 
(19 Pages), doi: 10.1142/S0218001421590394.

[19]	 M. Barma, U.M. Modibbo, Multi-objective mathematical 
optimization model for municipal solid waste management 
with economic analysis of reuse/recycling recovered waste 
materials, J. Comput. Cognit. Eng., 1 (2022) 122–137.

[20]	 A.M. Alhambra, M. Lostaglio, C. Perry, Heat-bath algorithmic 
cooling with optimal thermalization strategies, Quantum: Open 
J. Quantum Sci., 3 (2019) 188, doi: 10.22331/q-2019-09-23-188.

[21]	 K. Cheng, J. Yao, Y. Ren, Evaluation of the coordinated 
development of regional water resource systems based on a 
dynamic coupling coordination model, Water Supply, 19 (2019) 
565–573.


