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a b s t r a c t
Groundwater is a vital natural resource that is essential for the survival of humans and ecosystems 
alike. However, the depletion of the global water table has become a significant cause for concern. 
Hence, it is imperative that groundwater monitoring is managed in a systematic and sustainable 
way to ensure its long-term availability. Geospatial mapping is considered one of the most crucial 
tools in the field of subsurface water studies because it aids in finding, observing, and monitoring 
water levels in underground reservoirs. The purpose of this study is to classify the potential areas 
for groundwater use for agricultural development in the metropolitan district of Lahore in Punjab, 
Pakistan. To delineate groundwater potential areas, ten parameters are used including groundwater 
depth, geology, lineament density, slope, soil type, rainfall, drainage density, Topographic Wetness 
Index, land use/land cover and roughness. The weighted overlay technique is used to integrate the 
selected ten parameters for the delineation of groundwater potential zones. The contribution and 
influence of each parameter on groundwater recharge are considered, and potential groundwater 
recharge areas are classified into five classes ranging from very low to very high. Finally, the efficiency 
of the modeled groundwater potential zones is validated with the in-situ groundwater depth data 
from 40 wells distributed in the study area. The classification of recharge areas into distinct categories 
provides a useful framework for decision-making, enabling policymakers and stakeholders to priori-
tize areas for conservation and management based on their potential for groundwater recharge.

Keywords: �Analytic Hierarchy Process; Groundwater potential zone; Weighted overlay analysis; 
Geographic Information System; Remote sensing
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1. Introduction

Groundwater is a crucial natural resource that plays a 
vital role in supporting economic growth and providing a 
reliable source of drinking water, both in rural and urban 
areas [1]. Water is critical for human life on the earth’s sur-
face [2], but freshwater accounts for only 2.5% of the total 
water on the planet, and only one-third of it is suitable for 
human consumption. Groundwater is a major source of 
fresh drinking water in residential areas [3]. It is necessary 
to keep track of groundwater resources to manage ground-
water reduction crises and the effects of climate change 
on water resources [4]. Whereas Pakistan’s total water 
resources have been declining over the years, from 5,000 m3/
capita in 1950 to 1,100 m3 in 2005. This trend is expected to 
continue, with projections suggesting that by 2025, the per 
capita availability of water in Pakistan will further decline 
to 800  m3 [5]. Hence, the identification of new potential 
groundwater zones is of utmost importance to meet the 
growing demands for water in Pakistan. The dwindling 
water resources have led to water shortages and increased 
competition for limited water supplies, particularly in areas 
where agriculture is the primary source of livelihoods. 
Whereas the identification of new groundwater resources 
can provide an opportunity to supplement existing water 
supplies and mitigate the impacts of water scarcity. The 
traditional methods used for the delineation of groundwa-
ter resources are expensive and laborious. But on the other 
hand, Remote Sensing and Geographic Information System 
(GIS) can be employed for the search of groundwater due 
to it functionality for drawing the groundwater recharge 
areas and can identify and differentiate several structures, 
including rocks, water, and vegetation [6].

In recent years, GIS tools have been integrated with 
Multi-Criteria Decision-Making (MCDM) analyses to sup-
port complex decision-making processes and Analytic 
Hierarchy Process (AHP) is one such MCDM technique 
that has been widely used in groundwater studies to eval-
uate the relative importance of various criteria and factors 
affecting groundwater potential and recharge [7]. These 
methods can be integrated into decision structure, appro-
priateness, and precision [8]. GIS and MCDM techniques 
have been used by various researchers to map groundwater 
recharge zones around the world [1,9]. Thus, the most used 
and integrated application of AHP technology is ground-
water potential mapping and identifying suitable areas for 
artificial recharge [10,11]. Another advantage of the AHP 
technique is that it can be applied even when there is lim-
ited or insufficient availability of valid data [12]. A systematic 
AHP technique is applied to restrict the groundwater poten-
tial zone for the Uttar Pradesh region, India [13]. Similarly, 
Yeh et al. [14] employed AHP methodologies to calculate 
groundwater potentials by combining five contributing 
parameters: land cover/land use, lithology, slope, lineament 
density, and drainage density. The AHP is first proposed by 
Saaty [15] and is utilized to assign weights to each of the 
layers [16]. In the field of groundwater research, AHP is a 
basic tool to utilize MCDM procedures [17]. In this research 
the AHP modeling approach has been used with different 
parameters for groundwater potential zoning. In the light 
of applied methodology, the groundwater potential zone 
determination is assessed in evocative and technical.

1.1. Study area

Lahore is a significant city in Pakistan and is considered 
the commercial, cultural, and educational hub of the coun-
try as well as the country’s second-largest metropolitan dis-
trict by population and the provincial capital of the Punjab 
Province [18]. Lahore district lies between 31°16’ N to 31°41’ 
N and between 74°01’ E to 74°39’ E [19] covering an area of 
1,772 km2 (Fig. 1). The elevation is between 150 and 200 m 
above sea level. Lahore is geographically bordered by Kasur 
district to the south, Nankana district to the southwest, 
Sheikhupura district to the north and west, and India to the 
east. To the northwest, the city is delineated by the flowing 
waters of the River Ravi. Groundwater is a crucial source of 
water for most of the Lahore’s population, which uses it for 
various purposes such as drinking, agriculture, and domes-
tic activities. The rapid increase in population, urbanization, 
and industrialization has put tremendous pressure on the 
city’s groundwater resources, leading to a decline in water 
quality and quantity. Therefore, it is imperative to conduct 
a comprehensive assessment of the city’s groundwater sit-
uation and evaluate the present condition of groundwa-
ter resources across various areas within the metropolitan  
expanse.

2. Materials and methods

Remote sensing data with varying spectral, radiometric, 
and temporal resolutions can be used to provide precise, 
cost-effective, automatic, near-real-time information, even 
in the most remote locations on the planet [20]. The pri-
mary goal of this study is to use a multi-influencing factor 
approach to determine potential groundwater zones in the 
study area. Whereas, the research focus on the groundwa-
ter potential zone identification in metropolitan area. There 
for the research divided into the following steps (1) data 
gathered and generated, (2) applied multiple factors on 
data set using AHP modeling approach, (3) the groundwa-
ter potential indexed also applied and the hierarchy of all 
processes has also been showing in flow chart (Fig. 2).

2.1. Datasets

The satellite data is acquired from Landsat-8 satellite to 
extract the land use/land cover (LULC) of the study area. The 
Digital Elevation Model (DEM), Shuttle Radar Topographic 
Mission (SRTM), has also been used in this research with 
a spatial resolution of 30  m. For this research, all relevant 
data is obtained from several departments and sources as 
mentioned in Table 1. LULC and lineament density data 
are prepared from Landsat-8’s Operational Land Imager 
(OLI) sensor. Geological data of the study area is collected 
from the Geological Survey of Pakistan, dated 2007. Soil 
data is obtained from the Water and Power Development 
Authority (WAPDA), Lahore and rainfall data for 2020 is 
acquired from Climatic Research Unit web portal (https://
crudata.uea.ac.uk/cru/data/hrg/). DEM is used to calcu-
late several topographic indicators, that is, slope, drainage 
density, Topographic Wetness Index (TWI), and roughness. 
Furthermore, the location of the tube well is collected from 
the Global Positioning System (GPS) based field survey 
to validate the result.
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Although, to classify Groundwater potential Zones 
(GWPZ), ten important input factors are chosen based on 
literature: groundwater depth, geology, lineament density, 
slope, soil types, LULC, rainfall, drainage density, TWI, and 
roughness. The parameter with a greater weight indicates a 
higher impact on groundwater, while the parameter with a 
lower weight suggests a lower impact. The weight for each 
layer is assigned according to a Saaty scale of relative impor-
tance (1–9). The process of assigning weights involves a 
review of several past studies, as well as incorporating the 
expertise of experts in the field. The detailed description of 
the data and its processing is shown in Fig. 2.

2.2. Analytical hierarchy process

Different indicators contribute differently to the inci-
dence and recharge of groundwater [21]. One of the best tech-
niques for decision making using a number of criteria is the 
AHP [22]. AHP is an analysis that considers how important 
the parameters are in relation to one another. This approach, 
which is dependent on a paired comparison, allows to ana-
lyze and evaluate issues that have both quantitative and 
qualitative components. AHP procedure starts with the 
identification and prioritization of various criteria, such as 
goals and other alternatives. As a first step, the hierarchy is 
created by identifying the elements as well as their relation-
ships. The development of a priority scale in the analytical 

hierarchy process is based on the concept of measurement 
through paired comparisons of various aspects [23]. Because 
statistical measurements for a given weight consistency can 
be assessed and corrected as needed, AHP performs better 
than other approaches [24]. The hierarchy of the system is 
first established while utilizing AHP, and then the elements 
are analyzed and the consistency of the evaluation is veri-
fied. Each parameter is assigned a weight before being 
normalized. Thematic layers and their features are given 
weights on a scale of 1 to 9 based on how they might affect 
groundwater potential (Table 2). The normalized weights 
combined with the relative weight are determined using a 
pair-wise comparison matrix, including the thematic layers 
and their variables, to calculate their percentage of impact. 
By dividing every element in a comparison matrix column 
by the total of all the items in that column, they created the 
relative weight matrix. The total of the factors in each col-
umn of the relative weight matrix is equal to one. The pair-
wise comparison matrix of the groundwater thematic layer 
is obtained from AHP techniques (Table 3). Weights are 
normalized, and the weights for every layer are calculated 
by the eigenvector technique (Table 4).

Calculation of the consistency ratio (CR) involves a num-
ber of steps. First, the principal Eigenvalue (ʎ) and second, 
the consistency index (CI) is considered from the Eq. (1). 
λmax denotes a function for the matrix deviation from con-
sistency [25]. A pairwise matrix is consistent only when 

 
Fig. 1. Study area map of metropolitan.
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λmax is equal to or more than the number of thematic layers 
examined; otherwise, a new matrix will be generated [26]. 
Normalized weights are verified for consistency by calcu-
lating the consistency ratio [27].

CI �
�� �
�� �

�max n
n 1

	 (1)

where n indicates the total number of thematic layers used.

 
Fig. 2. Overview of the methodological framework.

Table 1
Datasets used for the extraction of required thematic layers

S. No. Data Source

1 Landsat-8
United State Geological Survey (https://earthexplorer.usgs.gov)

2 DEM (SRTM)
3 Slope

Derived from DEM
4 Drainage density
5 Topographic Wetness Index
6 Roughness
7 Groundwater depth Mahmood et al. [3]
8 Lineament density Derived from Landsat-8
9 Geology Geological Survey of Pakistan
10 Soil WAPDA, Lahore, Pakistan
11 Rainfall Climatic Research Unit (https://crudata.uea.ac.uk/cru/data/hrg/)
12 Tube well locations Field survey
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λmax = 10.37
CI = (10.37–10)/(10–1) = 0.041
CR = CI/RI, where RI is a random consistency index value
CR = 0.041/1.49 = 0.02

If CR value is less than 0.1, the weight is acceptable. If 
the value is greater than 0.1, then re-evaluation of the com-
parison matrix is required. If CR value is equal to 0, it refers 
that the matrix is good for further analysis. These ten fac-
tors are input into GIS software, where relative scores and 
weights are assigned to the corresponding thematic raster’s 
[28]. To calculate the GWPZ map, all 10 layers, after assign-
ing ranks and weights, are integrated.

Table 3 displays the normalized weights of every the-
matic layer and their corresponding total weight. The 
maximum weight shows the most important parameter/
thematic layer, and the minimum weightage denotes the 
least important parameter.

2.3. Groundwater potential index

Groundwater Potential Index (GWPI) is defined as the 
relative weights obtained from AHP techniques (Table 5) 
assigned to every thematic layer to calculate the cumulative 
weight of the respective thematic layer.

Eq. (2) is utilized to calculate the groundwater potential 
map [30].

GWPI GWwGWr GEwGEr LDwLDr

SLwSLr SOwSOr LUwLUr

� � �

� � �

� � � � � �
� � � � � �

�� �

� � � �
� � � �
� �
DDwDDr RFwRFr

TWIwTWIr ROwROr 	 (2)

where GWPI (groundwater potential index), GW (ground-
water depth), GE (geology), LD (lineament density), SL 
(slope), SO (soil types), LU (land use and land cover), DD 
(drainage density), RF (rainfall), TWI, RO (roughness), w 
(weightage), and r (rank) are used with abbreviations [31]. 
Depending on the range of GWPI values, GWPZ in an 
area that can be classified into five categories.

3. Results and discussion

In this research groundwater potential in the metropol-
itan expanse of Lahore district is estimated with the help of 
different datasets and AHP. Results against each thematic 
layer/parameter is discussed as follows. This study will 
also be helped in Lahore for sustainable water management 
under the used criteria. It has great potential to eliminate 
the area where groundwater issues exist under the follow-
ing indicators results as discussed below in detail. Moreover, 
for the future implication regarding potential zoning of 
groundwater its much beneficent in agricultural practices.

3.1. Depth to water table

Fig. 3 shows that depression is greater in urban areas. 
The level of aquifers is decreasing because of high levels of 
water consumption due to population growth. As reported 
in many studies, there is a zone of depression around the 
Shadman zone [2] in the study area. This refers that the inner 
city of our study area has low GWPZ due to the high depth 
of the water table. Similarly, as the water table is higher 
in the suburbs of the study area, the groundwater poten-
tial is greater. For the calculation of water table depth, the 
required data is obtained from the work of Mahmood et al. 

Table 2
Random index values [29]

No. Random index value

1 0
2 0
3 0.58
4 0.9
5 1.12
6 1.24
7 1.32
8 1.41
9 1.45
10 1.49

Table 3
Pair-wise comparison matrix of 10 thematic layers

Groundwater 
depth

Geology Lineament 
density

Slope Soil 
types

LULC Drainage 
density

Rainfall TWI Roughness

Groundwater depth 1 2 2 3 4 5 6 7 8 9
Geology 1/2 1 2 2 3 4 5 6 7 8
Lineament density 1/2 1/2 1 2 2 3 4 5 6 7
Slope 1/3 1/2 1/2 1 2 2 3 4 5 6
Soil types 1/4 1/3 1/2 1/2 1 2 2 3 4 5
LULC 1/5 1/4 1/3 1/2 1/2 1 2 2 3 4
Drainage density 1/6 1/5 1/4 1/3 1/2 1/2 1 2 2 3
Rainfall 1/7 1/6 1/5 1/4 1/3 1/2 1/2 1 2 2
TWI 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1/2 1 2
Roughness 1/9 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1/2 1
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Table 4
Calculation of normalized weights for 10 thematic layers

Ground
water depth

Geology Lineament 
density

Slope Soil 
types

LULC Drainage 
density

Rain-
fall

TWI Rough-
ness

Weight Influence 
(%)

Groundwater 
depth

0.300 0.322 0.282 0.302 0.290 0.269 0.247 0.226 0.208 0.191 0.264 26.4

Geology 0.150 0.322 0.282 0.201 0.218 0.215 0.205 0.194 0.182 0.170 0.214 21.4
Lineament 
density

0.150 0.080 0.141 0.201 0.145 0.161 0.164 0.161 0.156 0.149 0.151 15.1

Slope 0.100 0.080 0.070 0.101 0.145 0.108 0.123 0.129 0.130 0.128 0.111 11.1
Soil types 0.075 0.054 0.070 0.050 0.073 0.108 0.082 0.097 0.104 0.106 0.082 8.2
LULC 0.060 0.040 0.047 0.050 0.036 0.054 0.082 0.065 0.078 0.085 0.060 6.0
Drainage 
density

0.050 0.032 0.035 0.034 0.036 0.027 0.041 0.065 0.052 0.064 0.044 4.4

Rainfall 0.043 0.027 0.028 0.025 0.024 0.027 0.021 0.032 0.052 0.043 0.032 3.2
TWI 0.038 0.023 0.023 0.020 0.018 0.018 0.021 0.016 0.026 0.043 0.025 2.5
Roughness 0.033 0.020 0.020 0.017 0.015 0.013 0.014 0.016 0.013 0.021 0.018 1.8
Sum 1 1 1 1 1 1 1 1 1 1 1 100

Table 5
List of parameters and Analytic Hierarchy Process weight and ranking

Parameter Weight Influence (%) Sub-criteria Score Area (km2)

Groundwater depth (m) 0.264 26.4 <6.9 9 207.58
6.9–10.8 8 289.83
10.8–14.7 7 566.56
14.7–18.6 6 145.54
18.6–22.5 5 46.6
22.5–26.4 4 72.39
26.4–30.3 3 79.48
30.3–34.2 2 175.16
34.2–38.1 2 111.65
>40 1 45.73

Geology 0.214 21.4 Unconsolidated sand, and silty sand 2 100.35
Unconsolidated sand, silt and loam 4 12.51
Sand, silty sand and loamy clay 5 163.47
Loamy clay and silt 7 395.43
Silty clay, clay and silt 9 53.34
Unconsolidated sand, and silty sand 2 100.35

Lineament density (km/km2) 0.151 15.1 Very low (0–0.93) 1 303.17
Low (0.94–1.72) 3 421.91
Moderate (1.73–2.46) 5 508.95
High (2.47–3.34) 7 378.24
Very high (3.35–5.49) 9 126.38

Slope (°) 0.111 11.1 Very low (0–2) 9 613.34
Low (3–4) 7 636.82
Moderate (5–6) 5 368.63
High (7–10) 3 100.81
Very high (11–44) 1 11.4

Soil types 0.082 8.2 Sandy loam 5 140.75
Loamy 7 174.25
Clay loam 4 1093.46
Silty clay loam 2 332.16

Table 5 (Continued)
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[3]. The shallow water table is given a high ranking because 
the water depth is lower. The depth  >  40  m is assigned a 
lower rating because the water depth is very high, and all 
other in-between values are ranked accordingly.

3.2. Geology

Geological formation influences the existence and dis-
tribution of groundwater in any region. A geological map 
obtained from the Geological Survey of Pakistan (devel-
oped in 2007) is digitized and reclassified into 6 geological 
types: (1) silty clay, clay and silt, (2) loamy clay and silt, 
(3) silt and silty clay, (4) sand, silty sand and loamy clay, 
(5) unconsolidated sand, and silty sand, and (6) unconsoli-
dated sand, silt and loam. These geological types are used to 
define different geological units within the study area.

3.2.1. Lineament density

Lineaments are organized into curvilinear or linear fea-
tures. They can be identified from satellite imagery by their 
linear placement [32]. Linear is a region of cracks and faults 
that increases secondary porosity [33]. An automatic linea-
ment extraction process is used to obtain Lineaments of the 
study area from Landsat-8 satellite image [34]. Lineament 
is used in mineral exploration [35], geothermal resources 
[36], soil erosion studies [37], and for the identification of 
GWPZ [38,39]. Lineaments are extracted from Landsat-8 
images using Geomatica software suite. Lineaments are 

saved as vector format. Lineament density map was pre-
pared using line density tool in ArcGIS software suite. 
Lineament density maps are reclassified into five categories: 
very low (0.93), low (0.94–1.72), moderate (1.73–2.46), high 
(2.47–3.34), and very high (3.35–5.49). High lineament den-
sity is assigned to high weight, and low lineament density 
is assigned to low weight [40].

3.3. Slope

The slope is a particularly important topographic fea-
ture that indicates how the ground surface is shaped and 
gives vital information about the geological composition 
at a various spatial scale [41]. Slope, especially in moun-
tainous regions, is one of the regulatory elements for GW 
recharge [42]. In this research slope map is generated using 
SRTM DEM in ArcGIS software suite [43,44]. The study 
area’s slope is divided into five different categories: very 
low slope (0°–2°), low slope (3°–4°), moderate slope (5°–6°), 
high slope (7°–10°), and very high slope (11°–44°). Very high 
slopes provide less recharge because water obtained from 
rain flows quickly down a steep slope during the rainy sea-
son. Groundwater recharge is generally high in flat sloping 
areas, whereas infiltration is low in steep areas [9,45].

3.4. Soil

Soil hydraulic properties are critical in the movement of 
surface water through the soil to the water table [46]. Soil 

Parameter Weight Influence (%) Sub-criteria Score Area (km2)

LULC 0.060 6.0 Built up 1 810.95
Barren land 3 19.65
Vegetation 7 902.18
Water 9 7.82

Drainage density (km/km2) 0.044 4.4 Very low (0–48) 9 224.76
Low (49–96) 7 493.58
Moderate (97–145) 5 550.33
High (146–193) 3 367.46
Very high (194–241) 1 102.96

Rainfall (mm) 0.032 3.2 Very low (657–696) 1 249.36
Low (697–726) 3 247.76
Moderate (732–751) 5 335.36
High (7252–774) 7 669.59
Very high (775–821) 9 237.9

TWI 0.025 2.5 Very low (–8.09––3.91) 1 817.38
Low (–3.9––1.66) 3 389.03
Moderate (–1.65––0.59) 5 327.72
High (0.6–3.56) 7 156.6
Very high (3.57–12.4) 9 40.24

Roughness 0.018 1.8 Very High (0.11–0.36) 9 170.14
High (0.37–0.47) 7 489.87
Moderate (0.48–0.56) 5 641.91
Low (0.57–0.67) 3 373.11
Very low (0.68–0.89) 1 71.64

Table 5
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Fig. 3. Representation of comprehensive thematic layers of Lahore.
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is the top layer on earth and acts as a filtration medium 
for water to penetrate. Water-holding capacity depends 
on the type of soil as well as the ability to access it. If an 
area has highly permeable soils, it has more potential to 
store groundwater than areas of soil with low porosity. The 
soil map of the study area is obtained from the WAPDA in 
Lahore, which reflects the four classes of soil types. Clay 
loam is found in 62.50% of the total area, and 19.03% of the 
area has silty clay loam. The loam is found to cover 9.27% of 
the district of Lahore. Sandy loam is found to cover 5.98% 
of the study area. The soil weight is assigned according to 
the penetration rate [47].

3.5. Land use/land cover

LULC provide critical information on soil moisture, infil-
tration, surface water, groundwater, and so on [33]. “Land 
use” determines how people use land, while “land cover” 
represents how land is covered by physical features [10,48]. 
LULC has a significant effect on groundwater recharge [49]. 
Supervised image classification techniques are used to derive 
LULC maps using Landsat-8 image as input. We used super-
vised image classification technique as it has higher accu-
racy than unsupervised image classification technique [50]. 
Four different types of LULC are extracted from the study 
area: vegetation, built-up, barren land, and water. Water 
bodies and vegetation assigned very high weightage as it 
tends to support more groundwater potential. The built-up 
and barren land represent the moderate and low classes 
regarding groundwater potential, paying for penetration 
as compared to surface runoff [51] and according to [52], 
water has a high infiltration rate.

3.6. Drainage density

The drainage density is an important measure of the 
linear scale of the topography and the channels’ proxim-
ity to each other [53]. It is the result of the interaction of 
the factors controlling surface runoff [54] and indicates the 
closeness of the spacing between channels and surface fea-
tures [55]. It is a very important element in calculating the 
groundwater potential [7]. Drainage density is calculated 
using SRTM DEM at 30 m resolution. About 33.43% of the 
entire study area is composed of low and very low drain-
age density, as it is primarily a plain area. Only 34.29% of 
the study area has a moderate drainage density while 24.15% 
has a high drainage density. Only 8.13% of the total study 
area constitutes a very high drainage density. Factors such 
as land use, geology, topography, and geomorphology affect 
drainage density [56]. The maximum drainage density value 
means the highest chance of runoff, which ultimately results 
in less purification. The area that has a high drainage den-
sity is assigned lower ranking, while the area that has a 
low drainage density is assigned higher ranking.

3.7. Rainfall

Rainfall is an important factor in the water cycle and is 
a crucial source of water input for hydrology [7]. Sufficient 
rainfall is essential to increase the groundwater potential of 
any region [57] and rainfall is a key source of groundwater 

recharge [58]. For the year 2020, annual mean rainfall data 
is obtained from the Climatic Research Unit (https://crudata.
uea.ac.uk/cru/data/hrg/). Rainfall is not constant everywhere 
due to climate change in the region [59]. The annual rainfall 
in the study area for 2020 ranged from 657 to 821 mm. The 
rainfall map is generated using inverse distance-weighted 
interpolation technique in ArcGIS software suite. The map 
is categorized into five classes based on literature. The rain-
fall map shows that the upper and central parts of the study 
area received more rainfall, ranging from 752 to 821  mm, 
and thus a high weight is assigned to these regions. The 
lower part of the study area received only 657 to 751  mm 
and is, hence, assigned low weight.

3.8. Topographic Wetness Index

TWI is used to calculate the topographic control of the 
hydrologic process and reflect potential groundwater infil-
tration due to topography [60]. TWI is prepared using the 
runoff model (TOPModel) to stimulate the hydrologic 
flow of water across the watershed [61].

TWI � �

�
�

�

�
�ln

tan
�
�

	 (3)

α  = upslope; β  =  slope of a topographic gradient. The TWI 
of the study area varies from –1.65 to 12.4. Based on liter-
ature, TWI values are reclassified into five classes, such as 
(–1.65  –  –0.59), (–3.9  –  –1.66), (–8.09  –  –3.91), (0.6  –  3.56), 
and (3.57 – 12.4). The TWI has the great importance to the 
assignee of weights.

3.9. Roughness

The roughness index represents the height of the ele-
vation difference between adjacent cells of DEM [61]. The 
roughness index describes the undulation of the terrain, the 
higher the roughness, the higher the undulation, and vice 
versa. The hilly areas are characteristic of the mountainous 
region, and the terrain is changing from rugged to flat and 
flat terrain over the long term due to the process of erosion 
[47]. The roughness values are categorized into five classes 
with the help of literature, as (0.111–0.367), (0.368–0.371), 
(0.472–0.566), (0.567–0.669), and (0.67–0.889). High rough-
ness is assigned to a high weight, and low roughness is 
assigned to a low weight to enhance the quality of the results.

3.10. Groundwater potential zones

GIS and remote sensing are commonly used globally to 
identify groundwater potential zones [62]. Proper weight 
distribution is the main factor in getting the right results 
[63]. As the variety of layers increases, the accuracy of the 
result also increases [64]. The most common features used to 
identify GWPZ are geology, land-use land cover, slope, LD, 
soils, and drainage density [65]. The accuracy of potential 
zone map depends on how accurately the weights of each 
layer are assigned [66]. Many researchers use some of the 
approaches to provide precise weight to the layer, includ-
ing AHP technique [1,67,68]. The groundwater potential 
map is prepared with GIS-based AHP techniques (Fig. 4) 
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According to overlay analysis, the GWPI map is classified 
into five groundwater potential zones: very low (15.49%), 
low (24.36%), moderate (32.52%), high (26.63%), and very 
high (1%), respectively (Table 6). The very high groundwa-
ter potential zone (Fig. 4) is located on the district’s northeast 
and east-southeast sides. The names of the union council are: 
Ghawind, Jaman, Barki, Minahala Kalan, Shahzada, Jodhu 
Dheer, Jia Bagga, Ariyan, Heir, Pandoke, and Kahna Nau. 
Moreover, the central part of the Lahore district, because of 
its high drainage density and high slope with low absorp-
tivity, falls into very poor groundwater potential zones.

3.11. Validation of groundwater potential map

Field verification is a very important modeling pro-
cess. Without field verification, the GIS model has no sci-
entific importance [69]. For field verification, compare the 
groundwater depth with the groundwater potential zone 
map obtained from AHP techniques [70–73]. It is established 
that the AHP technique can be used as a simple testing tool 
for the valuation of groundwater potential [74,75], said that 
AHP techniques are very useful for complex analysis and the 
results of current research has been validating the research 
conducted in study area regarding groundwater contamina-
tion by Mahmood et al. [3]. A survey is conducted to deter-
mine the depth of the water table throughout the district. The 
coordinates of several wells (including hand pump and tube 
wells) are gathered using the GPS, and their depth in meters 

is recorded. The water depth ranges from 6.9  m to more 
than 42 m, according to the survey. Based on the tube well 
depth, wells are divided into four classes for better valida-
tion: shallow (6–15 m), moderate (16–22 m), high (23–34 m), 
and deep (35–42  m). The groundwater depth data is over-
laid on top of the groundwater potential zones layer. The 
cross-verification method is used to calculate the accuracy 
of weighted overlay results. According to the depth of wells 
in the Lahore district. The groundwater potential is high in 
those regions where the table is moderately shallow. A few 
areas (Ghawind, Jaman, Barki, Minahala Kalan, Shahzada, 
Jodhu Dheer, Jia Bagga, Ariyan, Heir, Pandoke, and Kahna 
Nau) have very high groundwater potential due to their low 
water tables, and other areas like the inner city of Lahore 
(Data Darbar-Peer Maki, Lohari Gate, Bhati Gate, Shahi 
Qilla, Gulberg III, Canal Park) have very poor groundwater 

 
Fig. 4. Groundwater potential zone map.

Table 6
Classification and area of groundwater potential zones

Classification Area (km2) Area (%)

Very low 264.87 15.49
Low 416.61 24.36
Moderate 556.08 32.52
High 455.45 26.63
Very high 17.17 1
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potential because of the high depth of the table. Overlay 
analysis has shown that many tube wells with shallow or 
moderate groundwater depths have high groundwater 
potential zones (Fig. 5). Hence, effective water management 
and planning are required because of the current worldwide 
water deficit. Accurately predicting and responding to the 
current status of crucial resources is the first step in effec-
tively planning the use of water resources. Particularly in 
areas with limited water resources, groundwater is a signif-
icant source of water [76]. The uncertainty of groundwater 
availability is high; therefore, assessment of GWPZ is essen-
tial. Effective groundwater resource management and con-
servation planning face a critical problem in the mapping  
of GWP.

This research can also be useful in agricultural practices 
to overcome the issues in agricultural perspective. This study 
somehow depends upon the satellite and field observations 
data and if the satellite data will be used with high spatial 
resolution with rich field observations/samples then it may 
helpful in more precise findings and beneficent for other 
fields, that is, sustainable water management and agricul-
tural practices as well.

4. Conclusions

Groundwater potential zone identification is very big 
problem these day in dense population areas. In this study, 

various parameters are used to delineate groundwater poten-
tial zones in Lahore, Pakistan. These parameters included 
groundwater depth, geology, lineament density, slope, soil 
types, land use and land cover, rainfall, drainage density, 
TWI, and roughness map. To prepare the maps, topographic 
maps, conventional data, and satellite images are used, and 
the AHP technique is employed to provide weights to each 
thematic and its associated classes. The study found that very 
high potential zones are typically located on the northeast-
ern and southeast side of the study area, while low potential 
zones are found in the central part of Lahore. The ground-
water potential map produced by the study is based on 
the integration of all thematic layers using GIS. The study 
also used existing tube-well data to confirm the potential 
zones, and the predicted map produced in the investigation 
matched over 80% of the field data. The study found that 
only 1% of the study area has a perfect zone for groundwater 
potential, while 26.63% has a high zone, 32.52% has a mod-
erate zone, 24.36% has a low zone, and 15.49% has a very 
low zone for groundwater potential. The study concludes 
that the methods used to delineate groundwater potential 
areas in Lahore are cost-effective and time efficient. The find-
ings of this study can be useful for promoting comprehen-
sive groundwater exploration and recharge management. 
Moreover, the approach used in this research is transfer-
able to other contexts where groundwater utilization is  
important.

 
Fig. 5. Validation of groundwater potential zones map.
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